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The purpose of this book is to provide an understandable and enjoyable teach-
ing instrument in the classroom or independently for the study of compress-
ible fluid flow. It is intentionally written in a rather informal style to talk 

to the reader, to gain his or her interest, and to keep the reader absorbed from 
cover to cover. It is aimed primarily at the senior undergraduate and first-year 
graduate student in aerospace, mechanical, and chemical engineering. However, it 
is also written for use by the practicing engineer and scientist who is striving to 
obtain a cohesive picture of the subject of compressible flow from a modern per-
spective. This book is meant to be read, not just used as a handbook to search for 
the equation that will solve a given problem. Compressible flow is a beautiful 
intellectual technical subject, and I believe that, like a masterwork painting made 
up of an inestimable number of brushstrokes, every word in this book is like a 
brushstroke in the whole canvas of compressible flow. Every word should be read 
and thought about in order for the reader to truly appreciate the “masterpiece” 
intellectual nature of this subject.
	 The response to the first three editions of this book from students, faculty, and 
practicing professionals has been overwhelmingly favorable. Therefore, the fourth 
edition carries over much of the fundamental content of the previous edition, plus 
adding the following important components:

1.	 End-of-chapter problems have been added to those few chapters that 
originally had no problems listed. Those particular chapters are heavily 
theoretically based, and the original purpose was to allow the reader to 
concentrate on absorbing the theoretical concepts without the additional 
activity of problem solving. In this new edition, however, problems have 
been added to these particular chapters in order to obtain a type of “full 
closure” on understanding the material.

2.	 At the end of every chapter, and just before the list of problems, a “Sugges-
tions” section has been added. The purpose of these suggestions is to help 
the reader better understand each end-of-chapter problem and to get started 
on a right path for the solution of each problem (please note that for many 
of the problems, there may be several “right paths”).  Moreover, each of the 
suggestions for problem solving helps to more strongly connect the reader 
with the particular relevant physical and theoretical content in the text reading 
material.

3.	 Chapter 15 on Hypersonic Flow has been expanded to recognize the greatly 
increased interest and current activity in the hypersonic flight regime. 
Hypersonic flow has many important physical and theoretical features that 
distinguish it from basic supersonic flow, and these differences are highlighted 
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in Chap. 15. The author feels that the current new activity and interest in 
the hypersonic flight regime will be long lasting, and Chap. 15 has been 
expanded with new content and figures with such matters in mind. This 
expansion is solidly in keeping with the title of this text, namely the 
“modern” aspects of Modern Compressible Flow. 

4.	 Continuing with the theme of “modern” that has permeated the previous 
editions, this new edition maintains the content devoted to computational 
fluid dynamics and high-temperature gas dynamics, two fields of intellectual 
endeavor that are intrinsically woven into most modern applications of 
compressible flow.

Taken in total, the book provides the twenty-first-century student with a balanced 
treatment of both the classical and modern aspects of compressible flow.
	 Special thanks are given to various people who have been responsible for the 
materialization of this fourth edition:

1. 	 My students, as well as students and readers from all over the world, who 
have responded so enthusiastically to the first three editions, and who have 
provided the ultimate joy to the author of being an engineering educator.

2.	 My family, who provide the other ultimate joy of being a husband, father, 
and grandfather.

3.	 My colleagues at the University of Maryland and the National Air and 
Space Museum, and at many other academic and research institutions, as 
well as industry, around the world who have helped to expand my horizons.

4.	 My editors at McGraw-Hill who have looked after me in the most profes-
sional, knowledgeable, understanding, and gentle manner possible.

	 Finally, compressible flow is an exciting subject—exciting to learn, exciting 
to use, exciting to teach, and exciting to write about. The purpose of this book is 
to excite the reader and to make the study of compressible flow an enjoyable 
experience. So this author says—read on and enjoy.

John D. Anderson, Jr.
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	 C H A P T E R 	 1
Compressible Flow—Some 
History and Introductory 
Thoughts

It required an unhesitating boldness to undertake a venture so few thought could 
succeed, an almost exuberant enthusiasm to carry across the many obstacles and 
unknowns, but most of all a completely unprejudiced imagination in departing 
so drastically from the known way.

J. van Lonkhuyzen, 1951, in discussing the problems faced in designing 
the Bell XS-1, the first supersonic airplane
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PREVIEW BOX

by shock waves generated in the air around the vehicle. 
Shock waves are an important aspect of compressible 
flow—they occur in almost all practical situations where 
supersonic flow exists. In this book, you will learn a lot 
about shock waves. When the Concorde flew overhead 
at supersonic speeds, a “sonic boom” was heard by those 
of us on the earth’s surface. The sonic boom is a result 
of the shock waves emanating from the supersonic ve-
hicle. The environmental impact of the sonic boom lim-
ited the Concorde to supersonic speeds only over water. 
However, modern research is striving to find a way to 
design a “quiet” supersonic airplane. Perhaps some of 
the readers of this book will help to unlock such secrets 
in the future—maybe even pioneering the advent of 
practical hypersonic airplanes (more than five times the 
speed of sound). In my opinion, the future applications 
of compressible flow are boundless.
	 Compressible flow is the subject of this book. 
Within these pages you will discover the intellectual 
beauty and the powerful applications of compressible 
flow. You will learn to appreciate why modern airplanes 
are shaped the way they are, and to marvel at the won-
derfully complex and interesting flow processes through 
a jet engine. You will learn about supersonic shock 
waves, and why in most cases we would like to do with-
out them if we could. You will learn much more. You 
will learn the fundamental physical and mathematical 
aspects of compressible flow, which you can apply to 
any flow situation where the flow speeds exceed that of 
about 0.3 the speed of sound. In the modern world of 
aerospace and mechanical engineering, an understand-
ing of the principles of compressible flow is essential. 
The purpose of this book is to help you learn, under-
stand, and appreciate these fundamental principles, 
while at the same time giving you some insight as to 
how compressible flow is practiced in the modern engi-
neering world (hence the word “modern” in the title of 
this book).
	 Compressible flow is a fun subject. This book is 
designed to convey this feeling. The format of the book 
and its conversational style are intended to provide a 
smooth and intelligible learning process. To help this, 
each chapter begins with a preview box and road map to 
help you see the bigger picture, and to navigate around 

Modern life is fast paced. We put a premium on moving 
fast from one place to another. For long-distance travel, 
flying is by far the fastest way to go. We fly in airplanes, 
which today are the result of an exponential growth in 
technology over the last 100 years. In 1930, airline pas-
sengers were lumbering along in the likes of the Fokker 
trimoter (Fig. 1.1), which cruised at about 100 mi/h. In 
this airplane, it took a total elapsed time of 36 hours to 
fly from New York to Los Angeles, including 11 stops 
along the way. By 1936, the new, streamlined Douglas 
DC-3 (Fig. 1.2) was flying passengers at 180 mi/h, tak-
ing 17 hours and 40 minutes from New York to Los 
Angeles, making three stops along the way. By 1955, 
the Douglas DC-7, the most advanced of the generation 
of  reciprocating engine/propeller-driven transports 
(Fig. 1.3), made the same trip in 8 hours with no stops. 
However, this generation of airplane was quickly sup-
planted by the jet transport in 1958. Today, the modern 
Boeing 777 (Fig. 1.4) whisks us from New York to Los 
Angeles nonstop in about 5 hours, cruising at 0.83 the 
speed of sound. This airplane is powered by advanced, 
third-generation turbofan engines, such as the Pratt and 
Whitney 4000 turbofan shown in Fig. 1.5, each capable 
of producing up to 84,000 pounds of thrust.
	 Modern high-speed airplanes and the jet engines 
that power them are wonderful examples of the applica-
tion of a branch of fluid dynamics called compressible 
flow. Indeed, look again at the Boeing 777 shown in 
Fig. 1.4 and the turbofan engine shown in Fig. 1.5—they 
are compressible flow personified. The principles of 
compressible flow dictate the external aerodynamic 
flow  over the airplane. The internal flow through the 
turbofan—the inlet, compressor, combustion chamber, 
turbine, nozzle, and the fan—is all compressible flow. 
Indeed, jet engines are one of the best examples in mod-
ern technology of compressible flow machines.
	 Today we can transport ourselves at speeds faster 
than sound—supersonic speeds. The Anglo-French 
Concorde supersonic transport (Fig. 1.6) was such a ve-
hicle. (Several years ago I had the opportunity to cross 
the Atlantic Ocean in the Concorde, taking off from 
New York’s Kennedy Airport and arriving at London’s 
Heathrow Airport just 3 hours and 15 minutes later—
what a way to travel!) Supersonic flight is accompanied 
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63′3″

49′2″

Figure 1.1 | Fokker Trimoter airliner, from the late 1920s. (continued on next page)
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Figure 1.2 | Douglas DC-3 Airliner, from the middle 1930s.

(continued from page 3)



Figure 1.3 | Douglas DC-7 airliner, from the middle 1950s.

Figure 1.4 | Boeing 777 jet airliner, from the 1990s.

(continued on next page)
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Figure 1.5 | Pratt and Whitney 4000 turbofan engine. Third-generation turbofan 
for widebody transports. Produces up to 84,000 lb (329.2 kN) of thrust. Powers 
some versions of the Boeing 777 (see Fig. 1.4).

Figure 1.6 | The Anglo-French Aerospatiale/BAC Concorde supersonic airliner.

(continued from page 5)



COMPRESSIBLE FLOW

3. In integral form

4. One-dimensional flow

5. Oblique waves

6. Quasi-one-dimensional flow

1. What it is, and how it blends
    with thermodynamics

2. The governing conservation
    equations

10. Unsteady moving shock
      and expansion waves

12. Numerical techniques for
      steady supersonic flow

Method of characteristics
Finite difference methods

Flow around blunt bodies
Two-dimensional nozzle flows

13. Time-marching numerical
      technique

14. Three-dimensional flows

15. Transonic flow

11. Conical flow

7. In differential form

17. High-temperature flows

Normal shock waves

Oblique shock waves
Expansion waves
Wave interactions

Nozzles
Diffusers

Flow with heat addition
Flow with friction

Wind tunnels
and rocket engines

16. Hypersonic flow

8. Velocity potential equation

9. Linearized flow

Subsonic flow
Supersonic flow

Figure 1.7 | Road map for the book.

than the differential form obtained later in box 7. Using 
just the integral form of the conservation equations, we 
will study one-dimensional flow (box 4), including nor-
mal shock waves, oblique shock, and expansion waves 
(box 5), and the quasi-one-dimensional flow through 
nozzles and diffusers, with applications to wind tunnels 
and rocket engines (box 6). All of these subjects can 
be  studied by application of the integral form of the 
conservation equations, which usually reduce to alge-
braic equations for the application listed in boxes 4–6. 
Boxes 1–6 frequently constitute a basic “first course” in 

some of the mathematical and physical details that are 
buried in the chapter. The road map for the entire book 
is given in Fig. 1.7. To help keep our equilibrium, we 
will periodically refer to Fig. 1.7 as we progress through 
the book. For now, let us just survey Fig. 1.7 for some 
general guidance. After an introduction to the subject 
and a brief review of thermodynamics (box 1 in Fig. 1.7), 
we derive the governing fundamental conservation 
equations (box 2). We first obtain these equations in in-
tegral form (box 3), which some people will argue is 
philosophically a more fundamental form of the equations 

(continued on next page)
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	 We note that all of the material in this book, boxes 
1–17 in Fig. 1.7, assumes inviscid flow, i.e., flow with 
no friction, thermal conduction, or mass diffusion, ex-
cept for the special case of one-dimensional flow with 
friction (box 4 in Fig. 1.7). Flows where the dissipative 
transport processes of friction, thermal conduction, and 
mass diffusion are important are called viscous flows. 
Viscous flow is a subject all by itself and is beyond the 
scope of this book. The assumption of inviscid flow may 
at first sound ideal and restrictive—flows in the real 
world are not so ideal. However, the important physics 
that dictates compressible flow, such as the propagation 
of pressure waves through the flow, is essentially an 
inviscid phenomenon. Moreover, for the vast majority 
of compressible flow applications, the influence of the 
dissipative transport phenomena is limited to small 
regions, such as the boundary layer along a solid surface. 
Hence, the inviscid flows treated in this book are indeed 
very practical and apply to a vast majority of everyday 
applications of compressible flow.
	 All of this constitutes a preview for the material that 
is covered in this book—a broad, general view to give 
you a better, almost philosophical feeling for what com-
pressible flow is about. As we continue, each chapter has 
its own preview box in order to enhance a broader under-
standing of the material in the chapter and to relate it to 
the general view. In this fashion, the detailed material in 
each chapter will more readily come to life for you.
	 In regard to the present chapter, we start out with 
some historical high-water marks in the application of 
compressible flow, and then discuss some introductory 
thoughts that are essential for our understanding of com-
pressible flow in the subsequent chapters. For example, in 
this chapter we give a brief review of thermodynamics—
but only those aspects of thermodynamics that relate di-
rectly to our subsequent discussions. Compressible flows 
are usually high-energy flows. Imagine that you are driv
ing down the highway at 65 mph, and you stick your hand 
out of the window; your hand will literally feel the en-
ergy of the 65-mph airstream, and it feels impressive. But 
65 mph is really a low velocity in the scheme of com-
pressible flow applications. Rather, imagine the energy 
you would feel if you were traveling at 650 mph, near the 
speed of sound, and you stick your hand out of the window 
(definitely not recommended). You would feel a lot of 
energy in the flow. High-speed flows are high-energy flows. 
Thermodynamics is the study of energy changes and their 

compressible flow, and the mathematics usually does 
not go beyond that of algebra. However, to deal with 
unsteady and/or multidimensional flows, we have to 
step to box 7 and obtain the governing conservation 
equations in differential form. They take the form of a 
system of coupled, highly nonlinear, partial differential 
equations. In some special cases for subsonic and super-
sonic flows, they can be linearized (boxes 8 and 9), lead-
ing to so-called “linearized flow.” However, in most 
cases, we must cope with the nonlinear equations. The 
way we do this, and the fascinating physical phenomena 
we discover along the way, is told in boxes 10–16 deal-
ing with unsteady flow, flow over cones, flows over 
supersonic blunt-nosed bodies, three-dimensional flows 
over bodies at an angle of attack to a uniform free 
stream, and the very special characteristics of transonic 
and hypersonic flows.
	 Our treatment of the material covered in boxes 4–6 
and 8–16 in Fig. 1.7 assumes the gas to be calorically 
perfect, i.e., to have constant values of specific heats. 
This is valid as long as the temperature in the flow does 
not exceed about 1000 K. The vast bulk of compressible 
flow applications satisfy this criterion, including the 
flow around the Concorde when it was cruising at Mach 
2. However, the flow over higher speed vehicles, as well 
as the flow through parts of a jet engine, will encounter 
temperatures high enough that the assumption of a calo-
rically perfect gas is not valid. Witness the flow over 
parts of the Space Shuttle as it entered the atmosphere 
at Mach 25, where flow temperatures were as high as 
8000 K, and the flow through rocket engines where tem-
peratures on the order of 4000 K or higher occur in the 
combustion chamber. At these temperatures, the flow is 
chemically reacting, and the analysis of compressible 
flow applications at these conditions must include the 
appropriate physical-chemical effects. Hence, to round 
out our study of compressible flow, toward the end of 
this book we identify, discuss, and analyze these high-
temperature flow effects. This subject is somewhat 
self-contained and is relatively independent of the ear-
lier chapters; for this reason in Fig. 1.7 we show high-
temperature flows in box 17 in an adjunct position 
somewhat separate from the main structure. However, 
this is not to minimize its importance. In many high-
speed flow applications today, high-temperature effects 
are very important. Any study of modern compressible 
flow must include box 17.

(continued from page 7)
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	 The remainder of this chapter simply deals with 
other introductory thoughts necessary to provide you 
with smooth sailing through the rest of the book. I wish 
you a pleasant voyage.

effects on the properties of a system. Hence, compressible 
flow embraces thermodynamics. I know of no compress-
ible flow problem that can be understood and solved 
without involving some aspect of thermodynamics. So 
that is why we start out with a review of thermodynamics.

1.1 | HISTORICAL HIGH-WATER MARKS
The year is 1893. In Chicago, the World Columbian Exposition has been opened 
by President Grover Cleveland. During the year, more than 27 million people visit 
the 666-acre expanse of gleaming white buildings, specially constructed from a 
composite of plaster of paris and jute fiber to simulate white marble. Located 
adjacent to the newly endowed University of Chicago, the Exposition commemo-
rates the discovery of America by Christopher Columbus 400 years earlier. Exhibi-
tions related to engineering, architecture, and domestic and liberal arts, as well as 
collections of all modes of transportation, are scattered over 150 buildings. In the 
largest, the Manufacturer’s and Liberal Arts Building, engineering exhibits from 
all over the world herald the rapid advance of technology that will soon reach 
explosive proportions in the twentieth century. Almost lost in this massive 31-acre 
building, under a roof of iron and glass, is a small machine of great importance. 
A single-stage steam turbine is being displayed by the Swedish engineer Carl G. P. 
de Laval. The machine is less than 6 ft long; designed for marine use, it has two 
independent turbine wheels, one for forward motion and the other for the reverse 
direction. But what is novel about this device is that the turbine blades are driven 
by a stream of hot, high-pressure steam from a series of unique convergent–diver-
gent nozzles. As sketched in Fig. 1.8, these nozzles, with their convergent–diver-
gent shape representing a complete departure from previous engineering applications, 
feed a high-speed flow of steam to the blades of the turbine wheel. The deflection 
and consequent change in momentum of  the steam as it flows past the turbine 
blades exerts an impulse that rotates the wheel to speeds previously unattainable—
over 30,000 r/min. Little does de Laval realize that his convergent–divergent steam 
nozzle will open the door to the supersonic wind tunnels and rocket engines of the 
mid-twentieth century.

The year is now 1947. The morning of October 14 dawns bright and beautiful 
over the Muroc Dry Lake, a large expanse of flat, hard lake bed in the Mojave 
Desert in California. Beginning at 6:00 a.m., teams of engineers and technicians 
at the Muroc Army Air Field ready a small rocket-powered airplane for flight. 
Painted orange and resembling a 50-caliber machine gun bullet mated to a pair of 
straight, stubby wings, the Bell XS-1 research vehicle is carefully installed in the 
bomb bay of a four-engine B-29 bomber of World War II vintage. At 10:00 a.m. 
the B-29 with its soon-to-be-historic cargo takes off and climbs to an altitude of 
20,000 ft. In the cockpit of the XS-1 is Captain Charles (Chuck) Yeager, a veteran 
P-51 pilot from the European theater during the war. This morning Yeager is in 
pain from two broken ribs incurred during a horseback riding accident the previous 
weekend. However, not wishing to disrupt the events of the day, Yeager informs 




